Thermoresistive effects in semiconductors (e.g. silicon) and metals (e.g. platinum) have been widely utilized to develop MEMS (Micro Electro-Mechanical Systems) thermal-based sensors. Thanks to their simplicity in design and implementation using conventional MEMS technologies, these sensors have been found in a wide range of applications, including temperature sensing, flow monitoring and acceleration measurement. However, their material cost, inflexibility, inadequate sensitivity and, especially, their lack of ability to work in harsh environments impede these devices in many applications, particularly where the temperature is high. Therefore, there is a strong demand for investigating the alternative materials with high thermosensitivity for niche thermal-based sensors. This research aims to theoretically and experimentally investigate thermoresistive effect in a group of semiconductors (e.g. silicon, silicon carbide and graphite) for niche and advanced thermal-based sensors such as high-temperature sensors, low-cost and highly sensitive thermoresistive sensors, and flexible/wearable sensors for healthcare applications.